This paper presents a novel system utilizing Un-manned Aerial Vehicles (UAVs) for real-time object detection and road safety monitoring. The proposed system leverages deep learning (DL) identify and classify object like potholes on congested Indian roads, particularly during late hours for enhanced accident prevention. A camera mounted on the drone captures images, which are then processed to detect and classify objects based on their characteristics and severity. The system employs Internet of Things (IoT) for data transmission and cloud storage for ubiquitous access and analysis. The results demonstrate the feasibility of the proposed system for intelligent road safety monitoring, offering timely alerts to authorities for prompt action. Whilst achieving an decent accuracy of 85 % for correct classification of potholes from the live-feed, the system works immaculately well in various conditions for detection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Road Safety Monitoring using deep learning and Unmanned Aerial Vehicle


    Beteiligte:


    Erscheinungsdatum :

    01.03.2024


    Format / Umfang :

    1448378 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Real-time road monitoring unmanned aerial vehicle

    LIU CHUANCHU | Europäisches Patentamt | 2020

    Freier Zugriff

    Unmanned Aerial Vehicle Surveying For Monitoring Road Construction Earthworks

    Julge, Kalev / Ellmann, Artu / Köök, Romet | BASE | 2019

    Freier Zugriff

    Safety aerial photography unmanned aerial vehicle

    WU YI | Europäisches Patentamt | 2020

    Freier Zugriff

    UNMANNED AERIAL VEHICLE FOR MONITORING AND UNMANNED AERIAL VEHICLE MONITORING SYSTEM

    ABE TATSUYA / ASANO MASAHIRO | Europäisches Patentamt | 2023

    Freier Zugriff

    Unmanned aerial vehicle safety monitoring method and system

    ZENG JINGJING / LIN ZIYI / LI HONGBO | Europäisches Patentamt | 2024

    Freier Zugriff