Massive Machine-Type Communications (mMTC) plays an increasingly important role in future wireless communications, and the use of a large number of low-power devices in conjunction with cell-free massive MIMO networks is a promising enabling technology. In this research, we explore activity detection for Grant-Free Random Access in massive mMTC within a cell-free Massive MIMO network employing distributed antenna arrays. Each active device sends a non-orthogonal pilot sequence to geographically clustered Access Points (APs) using the K-means algorithm. The clustered APs then relay the received signals to the Central Processing Unit (CPU) for collaborative activity detection. Simulation results demonstrate that for extensive coverage areas, the covariance-based activity detection algorithm with K-means clustered APs exhibits reduced complexity and improved activity detection efficiency while maintaining robust performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Covariance-Based Activity Detection Algorithm in Clustered Cell-Free Massive MIMO


    Beteiligte:
    Ye, Haowen (Autor:in) / Lv, Ranran (Autor:in) / Sun, Kai (Autor:in) / Huang, Wei (Autor:in)


    Erscheinungsdatum :

    24.05.2024


    Format / Umfang :

    1872730 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Cell-Free Massive MIMO Versus Small Cells

    Sheela Rani, Neelagiri / Vishnu Vardhan, D. / Mamatha, G. et al. | Springer Verlag | 2023



    EVD-Based Detection for Multi-Cell Massive MIMO Network

    Guo, Mangqing / Gao, Jinchun / Xie, Gang et al. | IEEE | 2015



    Remote Radio Head Multiclustering based Cell-Free Massive MIMO Systems

    Burguera, Pere Garau / Al-Tous, Hanan / Tirkkonen, Olav | IEEE | 2024