Introducing new analytic results, we minimize the cost of point-to-point fault tolerant avionics architectures. Refining the graph model of Hayes [1976], we formulate the worst-case feasibility of configuration as: What (f+l)-connected n-vertex graphs with fewest edges minimize the maximum radius or diameter of subgraphs (i.e., quorums) induced by deleting up to f of the n vertices? We solve this problem by proving: (i) K-cubes (cubes based on cliques) can tolerate a greater proportion of faults than can traditional C-cubes (cubes based on cycles); (ii) quorums formed from K-cubes have a diameter that is asymptotically equal to the Moore bound, while under no conditions of scaling can the Moore bound be attained by C-cubes whose radix exceeds 4. Thus, for fault tolerance logarithmic in n, K-cubes are optimal, whereas C-cubes are suboptimal. Our exposition also corrects and generalizes a mistaken claim by Armstrong and Gray [1981] concerning binary cubes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Graph-theoretic fault tolerance for spacecraft bus avionics


    Beteiligte:
    LaForge, L.E. (Autor:in) / Korver, K.F. (Autor:in)


    Erscheinungsdatum :

    01.01.2000


    Format / Umfang :

    1652348 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Graph-Theoretic Fault Tolerance for Spacecraft Bus Avionics

    LaForge, L. E. / Korver, K. F. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2000


    X-38 Spacecraft Fault-Tolerant Avionics System

    C. Kouba / D. Buscher / J. Busa | NTIS | 2003



    The X-38 Spacecraft Fault-Tolerant Avionics System

    Kouba,Coy / Buscher, Deborah / Busa, Joseph | NTRS | 2003