This research paper addresses the escalating challenges of urban traffic congestion and diminished driving safety resulting from the burgeoning automobile population. The study formulates an innovative framework for an Enhanced Traffic Management Model (ETMM) leveraging the convergence of Artificial Intelligence (AI), Machine Learning (ML), and 5G technology. Through in-depth interviews with a diverse panel of experts and comprehensive data analysis, the framework integrates real-time and historical data streams for accurate traffic prediction, congestion estimation, and dynamic signal optimization. The findings reveal that the proposed ETMM substantially improves traffic flow, minimizes travel time, and enhances urban mobility. Additionally, the research demonstrates the viability of AI-driven approaches for traffic management, underscored by successful model deployment and validation. The future scope lies in refining the framework with continuous data updates, incorporating user-centric insights, and expanding its applications to create safer, more efficient urban transportation systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Smart Traffic Control and Prediction Model Empowered with 5G Technology, Artificial Intelligence and Machine Learning


    Beteiligte:
    Datey, Vaishnav (Autor:in) / Prabhu, Sandeep (Autor:in)


    Erscheinungsdatum :

    02.11.2023


    Format / Umfang :

    513975 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Artificial Intelligence Empowered Models for UAV Communications

    Pradhan, Nilanjana / Sille, Roohi / Sagar, Shrddha | Springer Verlag | 2022


    Artificial Intelligence-Based Smart Traffic Control System

    Tiwari, Amit Kumar / Pandey, Raghvendra Kumar / Singh, Saharsh et al. | Springer Verlag | 2024


    Smart Traffic Signal Control System Using Artificial Intelligence

    Kumari, G. R. P. / Jahnavi, M. / Harika, M. et al. | Springer Verlag | 2023


    AN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING BASED TRAFFIC CONTROL SYSTEM

    MARAM BALAJEE / SRINADH V / ESWARI DUTTA SAI et al. | Europäisches Patentamt | 2020

    Freier Zugriff