Health monitor of bogie-bearing on the train can ensure constant operation of the rail transit system. Since the metro or other rail transit have high safety requirements, it is hard to acquire numerous fault samples. Besides, diagnosing train bogie-bearings under variable working conditions is challenging due to wheel-rail coupling, speed variation, and load fluctuation. An intelligent approach for bogie-bearing fault diagnosis is proposed to deal with the above problems. A third-order tensor model is established to be suitable for variable working conditions. Furthermore, a density-based affinity propagation tensor (DAP-Tensor) clustering algorithm is presented to identify different failures with unlabeled. Train bogie and public data sets were employed to simulate three probable conditions of train operation: high-frequency impact, speed variation, and load change. Compared with existing clustering methods in three cases, the proposed DAP-Tensor performs better in identifying bearing faults under variable working conditions. Moreover, The DAP-tensor has a comparable recognition rate to some deep learning methods, which unsupervised characteristics show it has potential for applications on rail transit trains.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Density-Based Affinity Propagation Tensor Clustering for Intelligent Fault Diagnosis of Train Bogie Bearing


    Beteiligte:
    Wei, Zexian (Autor:in) / He, Deqiang (Autor:in) / Jin, Zhenzhen (Autor:in) / Liu, Bin (Autor:in) / Shan, Sheng (Autor:in) / Chen, Yanjun (Autor:in) / Miao, Jian (Autor:in)


    Erscheinungsdatum :

    01.06.2023


    Format / Umfang :

    9525745 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    An Adaptive Multisensor Fault Diagnosis Method for High-Speed Train Bogie

    Man, Jie / Dong, Honghui / Jia, Limin et al. | IEEE | 2023


    Passenger train bogie

    FAN AIPING / BIAN QINGHUA / ZHANG ZE et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Bogie frame, bogie and bullet train

    MA LIJUN / CAO QINGDA / LIANG HAIXIAO et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Bullet train bogie

    ZHANG LIXIN / DUAN ZEBIN / LIU JUN et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Vehicle bogie fault rescue bearing trolley

    ZHOU XIANPING / MA LIN / BAI FUWEI et al. | Europäisches Patentamt | 2020

    Freier Zugriff