This paper presents a survey of literature about road feature extraction, giving a detailed description of a Mobile Laser Scanning (MLS) system (RIEGL VMX-450) for transportation-related applications. This paper describes the development of automated algorithms for extracting road features (road surfaces, road markings, and pavement cracks) from MLS point cloud data. The proposed road surface extraction algorithm detects road curbs from a set of profiles that are sliced along vehicle trajectory data. Based on segmented road surface points, we create Geo-Referenced Feature (GRF) images and develop two algorithms, respectively, for extracting the following: 1) road markings with high retroreflectivity and 2) cracks containing low contrast with their surroundings, low signal-to-noise ratio, and poor continuity. A comprehensive comparison illustrates satisfactory performance of the proposed algorithms and concludes that MLS is a reliable and cost-effective alternative for rapid road inspection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automated Road Information Extraction From Mobile Laser Scanning Data


    Beteiligte:
    Guan, Haiyan (Autor:in) / Li, Jonathan (Autor:in) / Yu, Yongtao (Autor:in) / Chapman, Michael (Autor:in) / Wang, Cheng (Autor:in)


    Erscheinungsdatum :

    01.02.2015


    Format / Umfang :

    1851448 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Automated Extraction of Urban Road Facilities Using Mobile Laser Scanning Data

    Yu, Yongtao / Li, Jonathan / Guan, Haiyan et al. | IEEE | 2015


    Road extraction from mobile laser scanning point clouds

    Tao, Wang | British Library Conference Proceedings | 2022


    Semi-Automated Generation of Road Transition Lines Using Mobile Laser Scanning Data

    Ye, Chengming / Li, Jonathan / Jiang, Han et al. | IEEE | 2020