With the advances of new sensor technologies and the prospect of crowd-sourced big location data, it has become feasible to obtain vehicle travel times on a large temporal and spatial scale. This study presents a novel method to make use of this new rich travel time data source to re-optimize traffic signals on a continual basis without requiring turning movement counts. In this method, the traffic state — degree of saturation is first estimated for each movement based on the observed travel time distribution and the signal control parameters are then optimized accordingly. This signal retiming method is evaluated under a wide range of simulated scenarios varying by penetration rates, measurement errors, vehicle arrival patterns, and traffic demand, showing comparable results to the typical traffic count-based approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Continual retiming of traffic signals using big travel time data


    Beteiligte:
    Shiravi, Sajad (Autor:in) / Fu, Liping (Autor:in) / Muresan, Matthew (Autor:in)


    Erscheinungsdatum :

    01.08.2017


    Format / Umfang :

    748192 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Quantifying the Benefit of Retiming Traffic Signals through Multiple Regression

    Mulandi, James / Martin, Peter T. | Transportation Research Record | 2011


    Optimum Time Intervals for Traffic Signal Retiming Process

    National Research Council (U.S.) | British Library Conference Proceedings | 2005


    Data-Driven Methodology for Prioritizing Traffic Signal Retiming Operations

    Dunn, Michael R. / Ross, Heidi Westerfield / Baumanis, Carolina et al. | Transportation Research Record | 2019