The resurgence of interest in artificial intelligence (AI) stem from impressive deep learning (DL) performance such as hierarchical supervised training using a Convolutional Neural Network (CNN). Current DL needs to focus on contextual reasoning, explainable results, and repeatable understanding that require evaluation methods. This paper presents measures of effectiveness (MOE) for DL techniques that extend measures of performance (MOP). MOPs include: Timeliness: computational efficiency, Accuracy: operational robustness, and Confidence: semi-supervised representation. MOE concerns include Throughput: data efficiency, Security: adversarial robustness, and Completeness: problem representation. DL evaluation requires verification and validation testing in realistic environments. An example is shown for Deep Multimodal Image Fusion (DMIF) that evaluates MOEs of information gain, robustness, and quality.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Learning Measures of Effectiveness


    Beteiligte:
    Blasch, Erik (Autor:in) / Liu, Shuo (Autor:in) / Liu, Zheng (Autor:in) / Zheng, Yufeng (Autor:in)


    Erscheinungsdatum :

    01.07.2018


    Format / Umfang :

    2572319 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Real Time Measures of Effectiveness

    P. T. Martin / J. Perrrin / V. Kalyani | NTIS | 2003



    PADS and Measures of Their Effectiveness

    Yakimenko, Oleg A. / Yakimenko, Oleg | AIAA | 2015


    Measures of Effectiveness for TMD Systems

    May, A. / Oxenham, D. / AIAA | British Library Conference Proceedings | 1994


    Cost Effectiveness of Debris Mitigation Measures

    Flury, W. / Heusmann, H. / Naumann, W. et al. | British Library Conference Proceedings | 1997