A new class of kernels for object recognition based on local image feature representations are introduced in this paper. These kernels satisfy the Mercer condition and incorporate multiple types of local features and semilocal constraints between them. Experimental results of SVM classifiers coupled with the proposed kernels are reported on recognition tasks with the COIL-100 database and compared with existing methods. The proposed kernels achieved competitive performance and were robust to changes in object configurations and image degradations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Mercer kernels for object recognition with local features


    Beteiligte:
    Siwei Lyu, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    235083 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Explicit Embeddings for Nearest Neighbor Search with Mercer Kernels

    Bourrier, A. / Perronnin, F. / Gribonval, R. m. et al. | British Library Online Contents | 2015


    THE MERCER AFFAIR

    Adam, Robin | Online Contents | 1994



    THE MERCER AFFAIR

    Adam, R. J. | Taylor & Francis Verlag | 1994


    Mercer Studie Autoelektronik

    Goppelt,G. / Mercedes Management Consulting,Zuerich,CH | Kraftfahrwesen | 2007