Reasonable layout of air cargo transportation and development of aviation hub economy play a key role in the efficient operation of the airport. Scientific cargo flow prediction is an important basis for subsequent design. Taking Changsha's GDP as the influencing factor, this paper forecasts Huanghua International Airport's cargo throughput in the next few years by using Machine Learning method. It provides scientific decision-making basis for airport development planning and provides experience and design ideas for other similar comprehensive transportation hub construction.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Forecast and Analysis of Cargo Flow of Airport Comprehensive Transportation Hub Using Machine Learning Method


    Beteiligte:
    Peng, Fei (Autor:in) / Wang, Puxin (Autor:in) / Dong, Siying (Autor:in) / Zhang, Zixuan (Autor:in)


    Erscheinungsdatum :

    01.07.2023


    Format / Umfang :

    786616 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Forecast and Analysis of Passenger Flow of Airport Comprehensive Transportation Hub

    Lu, Xiaolong / Tang, Yuancheng / Sun, Zhiyun et al. | IEEE | 2024


    AIRPORT CARGO TRANSPORTATION VEHICLE

    EBISAWA KOICHI | Europäisches Patentamt | 2024

    Freier Zugriff

    AIRPORT CARGO TRANSPORTATION VEHICLE

    EBISAWA KOICHI | Europäisches Patentamt | 2024

    Freier Zugriff

    Cargo forecast

    Online Contents | 1996


    Airport cargo container trailer

    CHEN XU | Europäisches Patentamt | 2021

    Freier Zugriff