In recent years, road traffic safety has been a major concern. Research on road traffic accidents is crucial to address people’s worries about their daily commutes. This study focuses on California, using U.S. traffic accident data from February 2016 to the end of 2021. The research employs two data equalization methods: single sample and mixed sample. Traffic accident severity prediction models are established based on the XGBoost algorithm. These models are compared using accuracy and ROC curves. The model with the "random undersampling + SMOTENC oversampling" sequence is the most effective. The SHAP interpretability method analyzes accident factors’ impact on the model results. Consequently, specific strategies for preventing road traffic accidents are proposed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Road Traffic Accident Severity Prediction under Unbalanced Data


    Beteiligte:
    Lu, Jiaxin (Autor:in) / Huang, Zhejun (Autor:in) / Yang, Lili (Autor:in)


    Erscheinungsdatum :

    15.12.2023


    Format / Umfang :

    1091743 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Prediction of road traffic accident severity based on multi-model fusion

    Lu, Wenting / Huang, Mingxia / Yu, Rongze | British Library Conference Proceedings | 2023


    Road traffic accident two-stage generation enhanced network model considering unbalanced data

    LI LEIXIAO / WANG XIAOXIA / WAN JIANXIONG | Europäisches Patentamt | 2024

    Freier Zugriff

    Road traffic accident prediction method

    WANG SHUNSHUN / YAN CHANGSHUN / SHAO YONG | Europäisches Patentamt | 2023

    Freier Zugriff

    Road traffic accident form prediction method

    SHI QIN / HU ZONGPIN / CHEN YIKAI et al. | Europäisches Patentamt | 2021

    Freier Zugriff