Resource scheduling stands as a pivotal concern within the realm of cloud computing. Aiming at the defects of low resource utilization in traditional cloud computing resource scheduling, a model derived from the scenario of online education video processing platform is established. Simultaneously, a new grey wolf algorithm (NGWO) is introduced to enhance the resource scheduling strategy for cloud computing. Addressing the issue of sluggish convergence, limited global search capabilities, and susceptibility to local optima in multiple iterations of the traditional GWO, the NGWO algorithm is enhanced through chaotic mapping, improving nonlinear convergence factor and introducing dynamic weight strategy. The experiments demonstrate that the NGWO algorithm exhibits superior convergence and enhanced optimization accuracy on unimodal and multimodal functions. Furthermore, the results underscore the NGWO algorithm's heightened optimization prowess in comparison to the GWO and GWO-S algorithms.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on Resource Scheduling Method of Cloud Computing Based on New Grey Wolf (NGWO) Algorithm


    Beteiligte:
    Yi, Zhao (Autor:in)


    Erscheinungsdatum :

    11.10.2023


    Format / Umfang :

    3690104 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Attitude maneuvering path planning method based on improved grey wolf algorithm

    WU CHANGQING / HAN XIAODONG / GONG JIANGLEI et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Improved Grey Wolf Algorithm: A Method for UAV Path Planning

    Xingyu Zhou / Guoqing Shi / Jiandong Zhang | DOAJ | 2024

    Freier Zugriff

    Short-term traffic volume prediction method based on improved grey wolf algorithm

    SHI QUAN / DAI JUNMING / CAO YANG et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Research on LQR control of active suspension based on Improved Grey Wolf Optimization algorithm

    Zhuo, Zichang / Zhang, Niaona / Xu, Haochen et al. | IEEE | 2023