In this paper, we present a new method of power management for Plug-in Hybrid Electric Vehicles (PHEVs) using Reinforcement Learning technique combined with trip information. Our new control strategy uses the remaining travel distance, which can be easily obtained from today's Global Positioning System (GPS), for the energy optimization of PHEVs. For a given trip, the remaining distance is highly correlated to the future energy consumption, a quantity our controller tries to learn and optimize continuously. The simulation results confirm the self-improving capability of our reinforcement learning controller and show that our controller outperforms the rule-based controller with respect to a defined reward function.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Power management for Plug-in Hybrid Electric Vehicles using Reinforcement Learning with trip information


    Beteiligte:
    Liu, Chang (Autor:in) / Murphey, Yi Lu (Autor:in)


    Erscheinungsdatum :

    01.06.2014


    Format / Umfang :

    282563 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Optimal power management of plug-in hybrid electric vehicles with trip modeling

    Gong, Qiuming / Li, Yaoyu / Peng, Zhong-Ren | Tema Archiv | 2008


    IMECE2007-41638 Optimal Power Management of Plug-In Hybrid Electric Vehicles With Trip Modeling

    Gong, Q. / Li, Y. / Peng, Z.-R. | British Library Conference Proceedings | 2008



    Multiple trip information based spatial domain optimisation for power management of plug-in hybrid electric vehicles

    Bin, Yang / Li, Yaoyu / Peng, Zhong-Ren | British Library Online Contents | 2010