In todays world, where concerns about privacy are on the rise the use of techniques to mask faces and protect individuals identities in multimedia content has become extremely important. This study thoroughly examines methods of anonymization with a specific focus on how Generative Adversarial Networks (GANs) can be used to enhance privacy preservation. By conducting an analysis that includes techniques like Gaussian Blur, Pixelation, Deep Learning and hybrid approaches our research highlights the impressive effectiveness of GAN based anonymization. This innovative approach not effectively hides identities but also ensures that the anonymized content remains understandable and usable. Alongside evaluating existing techniques our paper also sets the stage for exploration, in this field with the goal of advancing face masking anonymization techniques.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Advancements in Face Masking Anonymization: Novel Approaches, Robust Privacy Metrics, and Real-Time Solutions


    Beteiligte:
    GS, Prabith (Autor:in) / Abhishek, S (Autor:in) / T, Anjali (Autor:in) / Ramlal, Nandakishor Prabhu (Autor:in)


    Erscheinungsdatum :

    22.11.2023


    Format / Umfang :

    848599 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Privacy-friendly skies: Models, metrics, & solutions

    Sampigethaya, Krishna / Poovendran, Radha / Taylor, Steve | IEEE | 2013

    Freier Zugriff

    Robust Real-Time Face Detection

    Viola, P. / Jones, M. J. | British Library Online Contents | 2004


    Robust real-time face detection

    Viola, P. / Jones, M. | IEEE | 2001


    Robust Real-Time Face Detection

    Viola, P. / Jones, M. / IEEE | British Library Conference Proceedings | 2001