This paper presents a robust and practical attitude estimation algorithm based on low-cost MEMS inertial and magnetic sensors. Since accelerometers measure motion other than gravity and the geomagnetic field is sensitive to the surrounding environment, a robust measurement update method is proposed to attenuate the influences of motion disturbances and geomagnetic disturbances. The advantage of the proposed approach is that the gain matrix can be switched according to the standardized residual. Therefore, the disturbances existing in the observations are controlled. Experimental results using a homemade quadrotor platform and low-cost IMU show good real-time performance with low computational cost in a microcontroller.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust Kalman filtering for attitude estimation using low-cost MEMS-based sensors


    Beteiligte:
    Kong, Xianglong (Autor:in) / Li, Jianchuan (Autor:in) / Yu, Huapeng (Autor:in) / Wu, Wenqi (Autor:in)


    Erscheinungsdatum :

    01.08.2014


    Format / Umfang :

    224893 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Adaptive robust cubature Kalman filtering for satellite attitude estimation

    QIU, Zhenbing / QIAN, Huaming / WANG, Guoqing | British Library Online Contents | 2018


    Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors

    Garcia de Marina Peinado, Hector / Espinosa, Felipe / Santos, Carlos | BASE | 2012

    Freier Zugriff

    Kalman Filtering for Spacecraft Attitude Estimation

    E.J. Lefferts / F.L. Markley / M.D. Shuster | AIAA | 1982


    Kalman filtering for spacecraft attitude estimation

    Lefferts, E. J. / Markley, F. L. / Shuster, M. D. | NTRS | 1982