Autonomous vehicles and driver assistance systems utilize maps of 3D semantic landmarks for improved decision making. However, scaling the mapping process as well as regularly updating such maps come with a huge cost. Crowdsourced mapping of these landmarks such as traffic sign positions provides an appealing alternative. The state-of-the-art approaches to crowdsourced mapping use ground truth camera parameters, which may not always be known or may change over time. In this work, we demonstrate an approach to computing 3D traffic sign positions without knowing the camera focal lengths, principal point, and distortion coefficients a priori. We validate our proposed approach on a public dataset of traffic signs in KITTI. Using only a monocular color camera and GPS, we achieve an average single journey relative and absolute positioning accuracy of 0.26 m and 1.38 m, respectively.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Monocular Vision based Crowdsourced 3D Traffic Sign Positioning with Unknown Camera Intrinsics and Distortion Coefficients


    Beteiligte:
    Chawla, Hemang (Autor:in) / Jukola, Matti (Autor:in) / Arani, Elahe (Autor:in) / Zonooz, Bahram (Autor:in)


    Erscheinungsdatum :

    20.09.2020


    Format / Umfang :

    860571 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Urban Road Traffic Sign Recognition Algorithm Based on Monocular Vision

    Yu, Xue Cai ;Chen, De Ren | Trans Tech Publications | 2012


    MONOCULAR VISION RANGING METHOD, STORAGE MEDIUM, AND MONOCULAR CAMERA

    MIYAHARA SHUNJI | Europäisches Patentamt | 2022

    Freier Zugriff

    Crowdsourced Traffic Calming

    B. Iannucci | NTIS | 2017