In this paper, a framework for lane merge coordination is presented utilising a centralised system, for connected vehicles. The delivery of trajectory recommendations to the connected vehicles on the road is based on a Traffic Orchestrator and a Data Fusion as the main components. Deep Reinforcement Learning and data analysis is used to predict trajectory recommendations for connected vehicles, taking into account unconnected vehicles for those suggestions. The results highlight the adaptability of the Traffic Orchestrator, when employing Dueling Deep Q-Network in an unseen real world merging scenario. A performance comparison of different reinforcement learning models and evaluation against Key Performance Indicator (KPI) are also presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Reinforcement Learning in Lane Merge Coordination for Connected Vehicles


    Beteiligte:
    Nassef, Omar (Autor:in) / Sequeira, Luis (Autor:in) / Salam, Elias (Autor:in) / Mahmoodi, Toktam (Autor:in)


    Erscheinungsdatum :

    01.08.2020


    Format / Umfang :

    1218340 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep Reinforcement Learning in Lane Merge Coordination for Connected Vehicles

    Nassef, Omar / Sequeira, Luis / Salam, Elias et al. | ArXiv | 2020

    Freier Zugriff




    Lane Change and Merge Maneuvers for Connected and Automated Vehicles: A Survey

    Bevly, David / Cao, Xiaolong / Gordon, Mikhail et al. | IEEE | 2016