The reasonable control strategy of urban traffic signal can alleviate the congestion at intersections. To improve the learning efficiency and stability of intelligent signal control algorithms, this paper proposes an urban traffic signal control strategy based on the Rainbow algorithm. Based on the classical DQN algorithm, the Rainbow algorithm introduces the Double Q-Network, Noisy Network, Dueling-DQN, and Distribution-DQN into the network structure, and introduces the prioritized experience replay technology and multi-step learning into the algorithm training process. Taking the intersections of Niangre Road and Dangre Road in the Lhasa City as an example, three simulation scenarios are set based on the traffic flow intensity. Three traffic signal control strategies are conducted by using fixed-time signal control algorithm, classical DQN algorithm, and Rainbow algorithm, respectively. Results demonstrate that the Rainbow algorithm can converge quickly and reduce vehicle delay time, queue length effectively.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Intelligent Traffic Signal Control Strategy Based on Rainbow Algorithm


    Beteiligte:
    MA, Die (Autor:in) / OU, Jushang (Autor:in) / JU, Yanni (Autor:in)


    Erscheinungsdatum :

    28.10.2023


    Format / Umfang :

    2588982 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Research on Strategy Intelligent Control of Traffic Signal

    Zhang, Yan Min ;Luo, Hai Bing ;Wang, Jian Qiang | Trans Tech Publications | 2015



    Intelligent traffic intelligent signal control method

    PEI CHUNHONG / FENG QIANG | Europäisches Patentamt | 2023

    Freier Zugriff

    Intelligent traffic signal control device

    SHI WENBO / LI MING | Europäisches Patentamt | 2022

    Freier Zugriff

    Traffic Signal Switching Strategy Based on Reinforcement Learning Algorithm

    Hu, Linjian / Xu, Shibo / Li, Xiaoyang et al. | British Library Conference Proceedings | 2022