Network-friendly recommendation (NFR) has been identified as a promising method to facilitate the network performance. However, the current NFR approaches introduce non-negligible computation overhead and primarily focus on the content to recommend, while neglecting the impact of ranking among contents, sharing limited recommendation quality. In this paper, we aim to design a recommendation re-ranking algorithm to maximize the ranking-aware recommendation quality while satisfying the network constraint. We formulate the problem as an integer programming (IP) problem that maximizes the mean reciprocal rank of the baseline recommendation under network constraint. To address the computational challenge posed by the large-scale IP problem, we propose a low-complexity algorithm that enables real-time NFR. Specifically, our approach reduces the computational complexity by re-ranking only the measurement list, instead of the entire content list. Empirical results on real-world datasets demonstrate that compared with state-of-the-art NFR baselines, the proposed scheme delivers an improvement of more than 4.8% in both precision and coverage, while reducing 97.5% computation time.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Maximizing Ranking-Aware Recommendation Quality for Low-Complexity Network-Friendly Recommendation


    Beteiligte:
    Hou, Jiayin (Autor:in) / Lin, Jiawei (Autor:in) / Wang, Shuoyao (Autor:in)


    Erscheinungsdatum :

    10.10.2023


    Format / Umfang :

    1462896 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Ranking Safety Recommendation Effectiveness

    Benner, L. / International Society of Air Safety Investigators | British Library Conference Proceedings | 1992


    Personalized Context-Aware Multi-Modal Transportation Recommendation

    Chen, Xianda / Zhu, Meixin / Tiu, PakHin et al. | IEEE | 2024


    Charging station recommendation method, recommendation device and recommendation system

    ZHI YOUPENG / ZHANG CONG / ZHENG LAIWEI | Europäisches Patentamt | 2024

    Freier Zugriff

    RECOMMENDATION DEVICE AND RECOMMENDATION METHOD

    NAKADA KEIGO / IDE DAISUKE / KITA YUJIRO et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    RECOMMENDATION DEVICE AND RECOMMENDATION METHOD

    YASUHARA SHINYA / NAKADA KEIGO / INOUE YUSUKE et al. | Europäisches Patentamt | 2023

    Freier Zugriff