GNSS localization is an important part of today's autonomous systems, although it suffers from non-Gaussian errors caused by non-line-of-sight effects. Recent methods are able to mitigate these effects by including the corresponding distributions in the sensor fusion algorithm. However, these approaches require prior knowledge about the sensor's distribution, which is often not available. We introduce a novel sensor fusion algorithm based on variational Bayesian inference, that is able to approximate the true distribution with a Gaussian mixture model and to learn its parametrization online. The proposed Incremental Variational Mixture algorithm automatically adapts the number of mixture components to the complexity of the measurement's error distribution. We compare the proposed algorithm against current state-of-the-art approaches using a collection of open access real world datasets and demonstrate its superior localization accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Incrementally learned Mixture Models for GNSS Localization


    Beteiligte:
    Pfeifer, Tim (Autor:in) / Protzel, Peter (Autor:in)


    Erscheinungsdatum :

    01.06.2019


    Format / Umfang :

    1336889 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Train control, incrementally

    Foran, Pat | IuD Bahn | 2006


    INCREMENTALLY ADJUSTABLE SEAT ASSEMBLY

    ZOUZAL WINSEN C / PATRICK GERALD | Europäisches Patentamt | 2018

    Freier Zugriff

    An Incrementally Deployed Swarm of MAVs for Localization Using Ultra-Wideband

    Natter, Dominik / Ening, Klaus / Paliotta, Claudio | IEEE | 2022


    Incrementally Variable High-Voltage Supply

    Potter, D. W. / Chin, J. / Anderson, H. R. et al. | NTRS | 1985


    Learn to Detect Objects Incrementally

    Guan, Linting / Wu, Yan / Zhao, Junqiao et al. | IEEE | 2018