A new method for image feature extraction and segmentation is proposed in this paper. Abundant contour feature information of the image is expressed by contourlet transform while texture feature of the image is described by wavelet transform and Gray Level Co-occurrence Matrix (GLCM). The three type feature information compose feature matrix. The presented method describes different image information using different characterization transform and keeps well useful original image information. Then we select spectral mapping to simply the feature matrix and gain distributed datasets. And the images are segmented by fuzzy clustering algorithm with spatial constraints, which can improve the robustness of the proposed method to the images containing noise. Simulation results of the texture images and Synthetic Aperture Radar (SAR) images show the proposed method had higher accuracy compared with traditional spectral clustering.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Image Segmentation Based on Fussing Multi-feature and Spatial Spectral Clustering


    Beteiligte:
    Gou, S. P. (Autor:in) / Chen, P. J. (Autor:in) / Yang, X. Y. (Autor:in) / Jiao, L. C. (Autor:in)


    Erscheinungsdatum :

    01.05.2008


    Format / Umfang :

    641941 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Spatial-Feature Parametric Clustering Applied to Motion-Based Segmentation in Camouflage

    Wanderley, J. F. C. / Fisher, M. H. | British Library Online Contents | 2002


    A Spectral Clustering Ensemble Algorithm for Image Segmentation

    Jia, J. / Jiao, L. / Liu, B. | British Library Online Contents | 2010



    Robust Path-Based Spectral Clustering with Application to Image Segmentation

    Chang, H. / Yeung, D.-Y. / IEEE | British Library Conference Proceedings | 2005