This paper presents a method for testing the decision making systems of autonomous vehicles. Our approach involves perturbing stochastic elements in the vehicle's environment until the vehicle is involved in a collision. Instead of applying direct Monte Carlo sampling to find collision scenarios, we formulate the problem as a Markov decision process and use reinforcement learning algorithms to find the most likely failure scenarios. This paper presents Monte Carlo Tree Search (MCTS) and Deep Reinforcement Learning (DRL) solutions that can scale to large environments. We show that DRL can find more likely failure scenarios than MCTS with fewer calls to the simulator. A simulation scenario involving a vehicle approaching a crosswalk is used to validate the framework. Our proposed approach is very general and can be easily applied to other scenarios given the appropriate models of the vehicle and the environment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Stress Testing for Autonomous Vehicles


    Beteiligte:
    Koren, Mark (Autor:in) / Alsaif, Saud (Autor:in) / Lee, Ritchie (Autor:in) / Kochenderfer, Mykel J. (Autor:in)


    Erscheinungsdatum :

    01.06.2018


    Format / Umfang :

    355521 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    ADAPTIVE STRESS TESTING FOR AUTONOMOUS VEHICLES

    Koren, Mark / Alsaif, Saud / Lee, Ritchie et al. | British Library Conference Proceedings | 2018


    Adaptive Testing of Controllers for Autonomous Vehicles

    A. C. Schultz / J. J. Grefenstette / K. A. DeJong | NTIS | 1992


    Automatic testing of autonomous vehicles

    NIELSEN ERIK / KAUFMAN CHASE | Europäisches Patentamt | 2023

    Freier Zugriff

    Testing Predictions For Autonomous Vehicles

    FAIRFIELD NATHANIEL / FURMAN VADIM | Europäisches Patentamt | 2021

    Freier Zugriff

    Testing environment for autonomous vehicles

    WATSON ADAM / REARICK JOHNATHAN / BEMBIC ANTHONY | Europäisches Patentamt | 2020

    Freier Zugriff