We aim to infer 3D body pose directly from human silhouettes. Given a visual input (silhouette), the objective is to recover the intrinsic body configuration, recover the viewpoint, reconstruct the input and detect any spatial or temporal outliers. In order to recover intrinsic body configuration (pose) from the visual input (silhouette), we explicitly learn view-based representations of activity manifolds as well as learn mapping functions between such central representations and both the visual input space and the 3D body pose space. The body pose can be recovered in a closed form in two steps by projecting the visual input to the learned representations of the activity manifold, i.e., finding the point on the learned manifold representation corresponding to the visual input, followed by interpolating 3D pose.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Inferring 3D body pose from silhouettes using activity manifold learning


    Beteiligte:
    Elgammal, A. (Autor:in) / Chan-Su Lee, (Autor:in)


    Erscheinungsdatum :

    01.01.2004


    Format / Umfang :

    2118998 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Inferring 3D Body Pose from Silhouettes Using Activity Manifold Learning

    Elgammal, A. / Lee, C.-S. / IEEE Computer Society | British Library Conference Proceedings | 2004



    3D Human Pose from Silhouettes by Relevance Vector Regression

    Agarwal, A. / Triggs, B. / IEEE Computer Society | British Library Conference Proceedings | 2004


    Head Pose Estimation Using Fisher Manifold Learning

    Chen, L. / Zhang, L. / Hu, Y. et al. | British Library Conference Proceedings | 2003


    Head pose estimation using Fisher Manifold learning

    Chen, L. / Zhang, L. / Hu, Y. et al. | IEEE | 2003