This article first uses the PCA algorithm to reduce the dimensionality of expert-based flight parameter-based flight technical assessment report data. Then, the reduced data is respectively introduced into eight machine learning algorithms, including Logistic Regression, Decision Tree, etc. for pilot qualification assessment and prediction. Next, the SMOTEE algorithm is used to optimize the above eight models respectively. Finally, this article a dopts the PCA-SMOTE-Random Forest model with the best prediction effect to evaluate and predict the flight quality. Through confusion matrix diagrams and ROC curve diagrams, the accuracy of the algorithm’s prediction is nearly 100%. Finally, this article discusses a flight technology evaluation method based on flight parameter.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Flight Technology Assessment Based on Machine Learning and SMOTE Algorithm


    Beteiligte:
    Lei, Anran (Autor:in) / Zhou, Shicheng (Autor:in) / Cao, Xinyi (Autor:in) / Ma, Wenya (Autor:in)


    Erscheinungsdatum :

    15.12.2023


    Format / Umfang :

    792196 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch