The paper addresses the vehicle-to-X (V2X) data fusion for cooperative or collective perception (CP). This emerging and promising intelligent transportation systems (ITS) technology has enormous potential for improving efficiency and safety of road transportation. Recent advances in V2X communication primarily address the definition of V2X messages and data dissemination amongst ITS stations (ITS-Ss) in a traffic environment. Yet, a largely unsolved problem is how a connected vehicle (CV) can efficiently and consistently fuse its local perception information with the data received from other ITS-Ss. In this paper, we present a novel data fusion framework to fuse the local and V2X perception data for CP that considers the presence of cross-correlation. The proposed approach is validated through comprehensive results obtained from numerical simulation, CARLA simulation, and real-world experimentation that incorporates V2X-enabled intelligent platforms. The real-world experiment includes a CV, a connected and automated vehicle (CAV), and an intelligent roadside unit (IRSU) retrofitted with vision and lidar sensors. We also demonstrate how the fused CP information can improve the awareness of vulnerable road users (VRU) for CV/CAV, and how this information can be considered in path planning/decision making within the CAV to facilitate safe interactions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Novel Probabilistic V2X Data Fusion Framework for Cooperative Perception


    Beteiligte:
    Shan, Mao (Autor:in) / Narula, Karan (Autor:in) / Worrall, Stewart (Autor:in) / Wong, Yung Fei (Autor:in) / Stephany Berrio Perez, Julie (Autor:in) / Gray, Paul (Autor:in) / Nebot, Eduardo (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    2698797 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    CooperFuse: A Real-Time Cooperative Perception Fusion Framework

    Zheng, Zhaoliang / Xia, Xin / Gao, Letian et al. | IEEE | 2024


    DETC2019-98001 Data Association and Fusion Framework for Decentralized Multi-Vehicle Cooperative Perception

    Yoon, DoHyun Daniel / Ali, G. G. Nawaz / Aylew, Beshah | British Library Conference Proceedings | 2019


    Data Fusion with Split Covariance Intersection for Cooperative Perception

    Lima, Antoine / Bonnifait, Philippe / Cherfaoui, Veronique et al. | IEEE | 2021


    Sensor Fusion for Improved Cooperative Perception in CCAM

    Pinho, Hugo / Ferreira, Joaquim | IEEE | 2024