Visual Odometry (VO) estimation is an important source of information for vehicle state estimation and autonomous driving. Recently, deep learning based approaches have begun to appear in the literature. However, in the context of driving, single sensor based approaches are often prone to failure because of degraded image quality due to environmental factors, camera placement, etc. To address this issue, we propose a deep sensor fusion framework which estimates vehicle motion using both pose and uncertainty estimations from multiple onboard cameras. We extract spatio-temporal feature representations from a set of consecutive images using a hybrid CNN - RNN model. We then utilise a Mixture Density Network (MDN) to estimate the 6-DoF pose as a mixture of distributions and a fusion module to estimate the final pose using MDN outputs from multi-cameras. We evaluate our approach on the publicly available, large scale autonomous vehicle dataset, nuScenes. The results show that the proposed fusion approach surpasses the state-of-the-art, and provides robust estimates and accurate trajectories compared to individual camera-based estimations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-Camera Sensor Fusion for Visual Odometry using Deep Uncertainty Estimation


    Beteiligte:
    Kaygusuz, Nimet (Autor:in) / Mendez, Oscar (Autor:in) / Bowden, Richard (Autor:in)


    Erscheinungsdatum :

    19.09.2021


    Format / Umfang :

    1548355 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Uncertainty Estimation for Stereo Visual Odometry

    Ross, Derek / De Petrillo, Matteo / Strader, Jared et al. | British Library Conference Proceedings | 2021


    Uncertainty-Aware Attention Guided Sensor Fusion For Monocular Visual Inertial Odometry

    Shinde, Kashmira | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2020

    Freier Zugriff

    Deep 4D Automotive Radar-Camera Fusion Odometry with Cross-Modal Transformer Fusion

    Zhuo, Guirong / Xiong, Lu / Zhou, Mingyu et al. | SAE Technical Papers | 2023


    Deep Direct Visual Odometry

    Zhao, Chaoqiang / Tang, Yang / Sun, Qiyu et al. | IEEE | 2022


    4DRVO-Net: Deep 4D Radar–Visual Odometry Using Multi-Modal and Multi-Scale Adaptive Fusion

    Zhuo, Guirong / Lu, Shouyi / Zhou, Huanyu et al. | IEEE | 2024