This paper focuses on terrain classification in field environment and proposes a self-supervised terrain classification method which is based on 3D laser sensor and monocular vision sensor to adapt to changes in terrain environment and external conditions. First of all, extract typical traversable areas and typical obstacle areas by analyzing range data from 3D laser sensor and project these two kinds of areas into image space to label the image data. Then extract visual feature from the corresponding image to train classifier to classify the terrain. The experiment results demonstrate that the proposed method in this paper can obtain high classification accuracy and good real-time performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive terrain classification in field environment based on self-supervised learning


    Beteiligte:
    Dai, Xiaofang (Autor:in) / Li, Shulun (Autor:in) / Sun, Fengchi (Autor:in)


    Erscheinungsdatum :

    01.08.2014


    Format / Umfang :

    240399 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Supervised Terrain Classification with Adaptive Unsupervised Terrain Assessment

    Kurup, Akhil / Kysar, Sam / Bos, Jeremy et al. | British Library Conference Proceedings | 2021


    Supervised Terrain Classification with Adaptive Unsupervised Terrain Assessment

    Kurup, Akhil / Bos, Jeremy / Jayakumar, Paramsothy et al. | SAE Technical Papers | 2021


    Self-Supervised Classification for Planetary Rover Terrain Sensing

    Brooks, Christopher A. / Iagnemma, Karl D. | IEEE | 2007


    Self-supervised terrain classification for planetary surface exploration rovers

    Brooks, C. A. / Iagnemma, K. | British Library Online Contents | 2012


    Self-supervised learning to visually detect terrain surfaces for autonomous robots operating in forested terrain

    Zhou, S. / Xi, J. / McDaniel, M. W. et al. | British Library Online Contents | 2012