This paper introduces a novel vehicle-in-the-loop testing methodology called “Hybrid Testing”, which enables the evaluation of a real vehicle in a virtual traffic scenario in an enclosed proving ground with simulated traffic components and sensor signals. Among the other benefits, the introduced methodology is particularly suited to test and verify ADAS functions in virtual scenarios, which would otherwise be very difficult to create in real world. Development of ADAS functions require extensive testing and validation prior to deployment and generally, exhaustive real-life scenario evaluation of such systems is not feasible, let alone possible. With Hybrid Testing we can combine the benefits of simulation and real-life testing. We show how this methodology, as was developed in the EU-funded project INFRAMIX, can be used to evaluate ADAS functions on an example of a trajectory planning algorithm to demonstrate its working principles and benefits.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Vehicle-in-the-Loop Methodology for Evaluating Automated Driving Functions in Virtual Traffic


    Beteiligte:


    Erscheinungsdatum :

    19.10.2020


    Format / Umfang :

    2270875 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A VEHICLE-IN-THE-LOOP METHODOLOGY FOR EVALUATING AUTOMATED DRIVING FUNCTIONS IN VIRTUAL TRAFFIC

    Solmaz, Selim / Rudigier, Martin / Mischinger, Marlies | British Library Conference Proceedings | 2020


    Vehicle Dynamics Parameter Estimation Methodology for Virtual Automated Driving Testing

    Drechsler, Maikol Funk / Poledna, Yuri / Hjort, Mattias et al. | IEEE | 2024




    Validation of X-in-the-Loop Approaches for Virtual Homologation of Automated Driving Functions

    Riedmaier, Stefan / Jonas Nesensohn, Christian Gutenkunst, Tobias Düser, Bernhard Schick, Houssem Abdellatif | BASE | 2020

    Freier Zugriff