Safety assessment is one of the main challenges in deploying Automated Driving Systems (ADSs) on public roads. Scenario-based assessment is a common method to test such systems. Such scenario-based testing involves modeling the ADSs in a simulation environment to examine and evaluate their safety. Due to the complexity and uncertainty of the driving environment, the number of possible scenarios that ADSs can encounter is virtually infinite and there is a need for reduction of possible scenarios to a finite set. This research presents a generic framework to formulate a dissimilarity metric, which focuses on the comparison of driving scenarios on their most critical scenes, to reduce the number of possible scenarios into a finite and computationally manageable set.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Formulating a dissimilarity metric for comparison of driving scenarios for Automated Driving Systems


    Beteiligte:


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    1229173 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Validating Simulation Environments for Automated Driving Systems Using 3D Object Comparison Metric

    Wallace, Albert / Khastgir, Siddartha / Zhang, Xizhe et al. | IEEE | 2022


    Towards a Multivariate Scoring Metric for the Evaluation of Simulation Scenarios in Automated Driving

    Stadler, Christoph / German, Reinhard / Djanatliev, Anatoli | IEEE | 2022


    Assessment of Automated Driving Systems using real-life scenarios

    de Gelder, Erwin / Paardekooper, Jan-Pieter | IEEE | 2017


    Assessment of Automated Driving Systems Using Real-Life Scenarios

    de Gelder, Erwin / Paardekooper, Jan-Pieter | British Library Conference Proceedings | 2017


    Formulating Vehicle Aggressiveness Towards Social Cognitive Autonomous Driving

    Hu, Wen / Deng, Zejian / Wu, Yang et al. | IEEE | 2023