Pedestrian trajectory prediction is a key component for various applications that involve human and vehicle interactions, such as autonomous driving, traffic management and smart city planning. Existing methods based on graph neural networks have limited ability to capture group interactions and precisely model complex associations among multi-agents. To solve these problems, we propose OST-HGCN, an optimized hypergraph convolutional network. It models multi-agent trajectory interactions from both temporal and spatial perspectives using hypergraph structures, and optimizes the spatio-temporal hypergraph structure to enable fine-grained analysis of multi-agent trajectory motion intentions and high-order interactions. We employ OST-HGCN to a CVAE-based prediction framework, and use the optimized hypergraph structure to predict multi-agent plausible trajectories. We conduct extensive experiments on four real trajectory prediction datasets of NBA, NFL, SDD and ETH-UCY, and verify the effectiveness of the proposed OST-HGCN.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    OST-HGCN: Optimized Spatial-Temporal Hypergraph Convolution Network for Trajectory Prediction


    Beteiligte:
    Lin, Xuanqi (Autor:in) / Zhang, Yong (Autor:in) / Wang, Shun (Autor:in) / Hu, Yongli (Autor:in) / Yin, Baocai (Autor:in)


    Erscheinungsdatum :

    01.03.2025


    Format / Umfang :

    2180759 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Metro Passenger Flow Prediction via Dynamic Hypergraph Convolution Networks

    Wang, Jingcheng / Zhang, Yong / Wei, Yun et al. | IEEE | 2021


    Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction

    Sun, Yanfeng / Jiang, Xiangheng / Hu, Yongli et al. | IEEE | 2022


    Traffic flow prediction method based on bidirectional GRU hypergraph convolution model

    WANG ZHIZHONG / ZHANG PING / ZHENG HAIFEI et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Optimized Graph Convolution Recurrent Neural Network for Traffic Prediction

    Guo, Kan / Hu, Yongli / Qian, Zhen et al. | IEEE | 2021