This paper addresses the issue of the interval forecasting (constructing prediction intervals for future observations) of the traffic data time series using one of local polynomial nonparametric models - the local linear predictor. Two methods are proposed and compared. One is based on the theoretical formulation of the asymptotic prediction intervals and another is an empirical procedure using bootstrap, both for the local linear predictor. Finally, a case study using real-world traffic data is presented for both approaches, along with the results compared with each other. The results coincide with expectations and have validated the proposed methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Interval prediction for traffic time series using local linear predictor


    Beteiligte:
    Hongyu Sun, (Autor:in) / Chunming Zhang, (Autor:in) / Bin Ran, (Autor:in)


    Erscheinungsdatum :

    01.01.2004


    Format / Umfang :

    421331 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Prediction of Chaotic Time Series Based on the Fuzzy Predictor Model

    Zhang, L.-q. / Shao, C. | British Library Online Contents | 2005



    Real time adaptive non-linear estimator/predictor design for traffic systems with inadequate detectors

    Barimani, Nasim / Rahimi Kian, Ashkan / Moshiri, Behzad | IET | 2014

    Freier Zugriff

    Real time adaptive non‐linear estimator/predictor design for traffic systems with inadequate detectors

    Barimani, Nasim / Rahimi Kian, Ashkan / Moshiri, Behzad | Wiley | 2014

    Freier Zugriff

    Traffic flow time series prediction method and device

    DUAN HONGYUN / PENG CHEN / WANG WEI | Europäisches Patentamt | 2020

    Freier Zugriff