Because of their potential important role in tasks of 3D space which ground vehicles cannot perform, autonomous flight and exploration of micro aerial vehicle(MAV) has attracted increasing attention. Many researches focused on flight with RGB cameras or laser range finders, whereas MAV with RGB-D cameras has been rarely mentioned. In this paper we present an autonomous navigation system for indoor flight with only onboard sensors — an RGB-D camera and a low-cost MEMS inertial measurement unit(IMU). In order to get the best performance of navigation, many visual odometry techniques have been evaluated through experiments. Then, hover and trajectory flight experiments prove the design is valid and efficient for autonomous flight in complex indoor environments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Toward autonomous navigation using an RGB-D camera for flight in unknown indoor environments


    Beteiligte:
    Tang, Liangwen (Autor:in) / Yang, Sheng (Autor:in) / Cheng, Nong (Autor:in) / Li, Qing (Autor:in)


    Erscheinungsdatum :

    01.08.2014


    Format / Umfang :

    234978 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Autonomous Flight in Unknown Indoor Environments

    Bachrach, Abraham Galton / He, Ruijie / Roy, Nicholas | DSpace@MIT | 2009

    Freier Zugriff

    Autonomous Flight in Unknown Indoor Environments

    Bachrach, Abraham / He, Ruijie / Roy, Nicholas | SAGE Publications | 2009

    Freier Zugriff

    Autonomous Flight in Unstructured and Unknown Indoor Environments

    Bachrach, Abraham Galton / He, Ruijie / Roy, Nicholas | DSpace@MIT | 2010

    Freier Zugriff

    Autonomous flight in unstructured and unknown indoor environments

    Bachrach, Abraham Galton | DSpace@MIT | 2009

    Freier Zugriff

    Unmanned Ground Vehicle Autonomous Navigation in Unknown Indoor Environments

    Xie, Mengjiao / Song, Chunlei / Wang, Jiahui et al. | IEEE | 2023