Aiming at the problem of existing bag-of-visual words based image retrieval algorithm, such as poor stability and low retrieval accuracy, a bag-of-visual words based improved image retrieval algorithm (IBVW) is proposed, which extracts features from the images in the database. The approximate K-means algorithm is adopted to cluster the image features into visual words and store them in the database. And then, the feature extraction and the inverted index in the online stage are implemented on the query image to find the images with high similarity in the database. At last, the best matching image is acquired through the similarity calculation, voting scheme and homography based matching algorithm. Simulation results and performance analysis show that the accuracy of our retrieval algorithm is improved by about 10% compared with existing methods for vision indoor positioning.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Bag-of-Visual Words based Improved Image Retrieval Algorithm for Vision Indoor Positioning


    Beteiligte:
    Jia, Shuang (Autor:in) / Ma, Lin (Autor:in) / Tan, Xuezhi (Autor:in) / Qin, Danyang (Autor:in)


    Erscheinungsdatum :

    01.05.2020


    Format / Umfang :

    228189 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Combining words and object-based visual features in image retrieval

    Nakagawa, A. / Kutics, A. / Tanaka, K. et al. | IEEE | 2003


    Combining Words and Object-Based Visual Features in Image Retrieval

    Nakagawa, A. / Kutics, A. / Tanaka, K. et al. | British Library Conference Proceedings | 2003




    An improved NPSO-GN Algorithm for TOA-based Positioning in Indoor Environments

    Huang, Kaixuan / Zhou, Guangbing / Lin, Feiyu et al. | IEEE | 2023