This paper introduces a queueing network-based computational model to explain driver performance in a pedestrian-detection task assisted with night-vision-enhancement systems. The computational cognitive model simulated the pedestrian-detection task using images displayed by two night-vision systems as input stimuli. The system equipped with a far-infrared (FIR) sensor generated less-cluttered images than the system equipped with a near-infrared (NIR) sensor. Using a reinforcement learning process, the model developed eye-movement strategies for each night-vision system. The differences in eye-movement strategies generated different eye-movement behaviors, in accord with the empirical findings.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Investigation of Driver Performance With Night-Vision and Pedestrian-Detection Systems—Part 2: Queuing Network Human Performance Modeling


    Beteiligte:
    Ji Hyoun Lim, (Autor:in) / Yili Liu, (Autor:in) / Tsimhoni, Omer (Autor:in)


    Erscheinungsdatum :

    01.12.2010


    Format / Umfang :

    715701 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch