Vehicle-to-everything (V2X) networks support a variety of safety, entertainment, and commercial applications. This is realized by applying the principles of the Internet of Vehicles (IoV) to facilitate connectivity among vehicles and between vehicles and roadside units (RSUs). Network congestion management is essential for IoVs and it represents a significant concern due to its impact on improving the efficiency of transportation systems and providing reliable communication among vehicles for the timely delivery of safety-critical packets. This paper introduces a framework for proactive congestion management for IoV networks. We generate congestion scenarios and a data set to predict the congestion using LSTM. We present the framework and the packet congestion dataset. Simulation results using SUMO with NS3 demonstrate the effectiveness of the framework for forecasting IoV network congestion and clustering/prioritizing packets employing recurrent neural networks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    LSTM-Based Proactive Congestion Management for Internet of Vehicle Networks


    Beteiligte:


    Erscheinungsdatum :

    07.10.2024


    Format / Umfang :

    548785 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Proactive congestion management via data-driven methods and connected vehicle-based microsimulation

    Kummetha, Vishal C. / Kamrani, Mohsen / Concas, Sisinnio et al. | Taylor & Francis Verlag | 2024


    Proactive route guidance to avoid congestion

    Angelelli, E | Online Contents | 2016


    LSTM METHOD AND APPARATUS FOR PREDICTION OF TRAFFIC CONGESTION BASED ON LSTM

    SHIN DONG HOON / KWON HYE JEONG / BAEK JI WON et al. | Europäisches Patentamt | 2022

    Freier Zugriff