A vehicle positioning fusion model adopted Back-Propagation (BP) neural network is proposed in this paper, which presents a combination of Global Positioning System (GPS) and Mobile Positioning System (MPS) of lower cost and accuracy. The BP Algorithm is employed, and the problems of the slow convergence speed of the BP algorithm and the local minimal point can be solved utilizing the momentum method and the strategy of adaptive learning-rate. Training results with research data shows that this algorithm is applicable. The model is proved to be less depended on the positioning models of GPS and MPS and less cost consuming except for certain errors of position accuracy. Hence we also give result analysis for advanced ideas and improvements.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fusion model of vehicle positioning with BP neural network


    Beteiligte:
    Yucong Hu, (Autor:in) / Jianmin Xu, (Autor:in) / Huiling Zhong, (Autor:in) / Yimin Wu, (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    289653 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Fusion Model of Vehicle Positioning with BP Neural Network

    Hu, Y. / Xu, J. / Zhong, H. et al. | British Library Conference Proceedings | 2003


    Neural Network Based Data Fusion for Vehicle Positioning in Land Navigation System

    Gingras, Denis / St-Pierre, Mathieu | SAE Technical Papers | 2004


    Neural network based data fusion for vehicle positioning in land navigation system

    St-Pierre,M. / Gingras,D. / Univ.de Sherbrooke,CA | Kraftfahrwesen | 2004


    Vehicle Trajectory Prediction Model Based on Fusion Neural Network

    Mou, Xuemei / Yu, Xiang / Wang, Binbin et al. | Springer Verlag | 2023


    2004-01-0752 Neural Network Based Data Fusion for Vehicle Positioning in Land Navigation System

    St-Pierre, M. / Gingras, D. / Society of Automotive Engineers | British Library Conference Proceedings | 2004