With advances in autonomous vehicles and Vehicular ad-hoc networks (VANETs) technology, it is envisioned that more and more vehicles will have the capability to communicate with both their peers and roadside units. This technological advance has fostered a series of research in future intelligent transportation systems with the aim to enhance travel efficiency and reduce greenhouse gas emissions. However, for any intelligent transportation system to be widely adopted in the real world, safeguarding the privacy of participating vehicles would be a critical aspect to address. In this paper, we propose an advanced and efficient privacy-preserving data aggregation protocol that facilitates the collection and aggregation of vehicle information to conduct accurate traffic flow prediction. Our experiments have demonstrated both the efficiency and effectiveness of our approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Advanced Privacy-Preserving Data Aggregation for Accurate Traffic Flow Prediction


    Beteiligte:
    Nicewarner, Tyler (Autor:in) / Esser, Alex (Autor:in) / Yu, Alian (Autor:in) / Allami, Ali (Autor:in) / Lin, Dan (Autor:in)


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    573813 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    FedGRU: Privacy-preserving Traffic Flow Prediction via Federated Learning

    Liu, Yi / Zhang, Shuyu / Zhang, Chenhan et al. | IEEE | 2020


    Privacy-Preserving Multi-period Traffic Prediction Model

    Sun, Shu / Zhu, Zheren / Zhang, Xinmin et al. | Springer Verlag | 2025


    Privacy-Preserving Traffic Flow Estimation for Road Networks

    Bentafat, Elmahdi / Rathore, M. Mazhar / Bakiras, Spiridon | IEEE | 2020


    Privacy-preserving Intelligent Traffic Light Control

    Ying, Zuobin / Cao, Shuanglong / Xu, Shengmin et al. | IEEE | 2020