Traffic congestion poses significant economic, environmental, and social challenges. High-resolution loop detector data and signal state records from Automated Traffic Signal Performance Measures (ATSPM) offer new opportunities for traffic signal optimization at intersections. However, additional factors such as geometry, traffic volumes, Turning-Movement Counts (TMCs), and human driving behaviors complicate this task. Existing simulators (e.g., SUMO, Vissim) are computationally intensive, while machine learning models often lack lane-specific traffic flow estimation. To address these issues, we propose two computationally efficient Attentional Graph Auto-Encoder frameworks as “Digital Twins” for urban traffic intersections. Leveraging graph representations and Graph Attention Networks (GAT), our models capture lane-level traffic flow dynamics at entry and exit points while remaining agnostic to intersection topology and lane configurations. Trained on over 40,000 hours of realistic traffic simulations with affordable GPU parallelization, our framework produces fine-grained traffic flow time series. This output supports critical applications such as estimating Measures of Effectiveness (MOEs), scaling to urban freeway corridors, and integrating with signal optimization frameworks for improved traffic management.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Graph Attention Network for Lane-Wise and Topology-Invariant Intersection Traffic Simulation


    Beteiligte:


    Erscheinungsdatum :

    01.04.2025


    Format / Umfang :

    1309767 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic light intersection full-lane passing method

    LI LISHI | Europäisches Patentamt | 2021

    Freier Zugriff

    Traffic intersection lane management device using data analysis

    SUN SHUAIKANG / DU ZHIGANG / WANG WENWEN et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Intersection traffic flow adjusting system for variable lane

    WANG ZIYI / TAN CHILIE / QU JUNQIU et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Real-Time Lane-Wise Traffic Monitoring in Optimal ROIs

    Qiu, Mei / Lin, Wei / Christopher, Lauren Ann et al. | IEEE | 2024


    Intelligent network connection vehicle lane changing control method for entrance lane of heterogeneous traffic flow intersection

    LYU YUEJING / WANG XINYUE / XUE YONGKANG et al. | Europäisches Patentamt | 2024

    Freier Zugriff