Self-Driving Car research problem requires several sub-topics that need to be discussed more deeply. Such as Deep Learning, Computer Vision, Fusion Sensor, Localization, Control, until Path Planning. All of them are fusion of several fields of study. This paper discusses the results of implementation of lane detection algorithm on toll road Cipularang as parts of self-driving car system. Video image taken using action camera mounted on top of the vehicle, with 1280×720 resolution. Average speed of the vehicle is 100 km per hour. Programming language of image processing using Python 3. Image processing method are a combination of methods of colour region, line selection, canny edge detection, and Hough transform. The result shows this algorithm needed to be add some method that can changing the parameters during day and night adaptively. Because constant parameters can only be used in the same lighting conditions. Overall the implementation method in Python Language can successfully detect the road lane with an accuracy above 90 percent.
Implementation of lane detection algorithm for self-driving car on toll road cipularang using Python language
01.10.2017
391375 byte
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
IEEE | 2021
|