In this paper we present the use of distributed value function techniques to reach collaboration in a multiagent system. We apply this method in two different simulation environments: a mobile robot planning/searching task and an intelligent traffic system in an urban environment. In the case of the intelligent traffic system, results show an improvement with respect to a standard fix-time controller and local adaptive controllers. Trajectories for optimal search in an obstacle environment are obtained in the mobile robot case. Some variations to the actual algorithm are pointed out to suit our cases. We conclude discussing our future work.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi agent collaboration using distributed value functions


    Beteiligte:
    Ferreira, E.D. (Autor:in) / Khosla, P.K. (Autor:in)


    Erscheinungsdatum :

    01.01.2000


    Format / Umfang :

    585286 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multi Agent Collaboration Using Distributed Value Functions

    Ferreira, E. D. / Khosla, P. / IEEE | British Library Conference Proceedings | 2000


    Multi-agent System Supporting Dynamic Collaboration

    Xu, Q.-s. / Fan, Y.-s. / Wu, C. et al. | British Library Online Contents | 2001


    Multi-agent system for shipper's truck freight collaboration

    Shum, P. C. C. / Ng, V. T. Y. | IEEE | 2011


    Value chain collaboration

    Tabibzadeh, Ramin / Wireman, David | Emerald Group Publishing | 2003