Complex aerospace systems' cannot afford downtime to diagnose problems $the interruption of mission critical functions and prohibitive cost of lost business are unacceptable. Such systems are characterized by having many components and require a team of experts to diagnose problems after they occur or to assemble a knowledge database suitable for rapid model based diagnostics. In this paper we present an efficient and largely automated method for developing diagnostic Bayesian network models. The models are created by exploiting existing domain knowledge in the form of reliability fault trees and diagnostic observation lists. The algorithms for conversion of the trees and databases into Bayesian network models have been embedded in a C++ software tool and tested on examples of fault trees ranging from 10 to 800 nodes, which were developed for satellite systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An efficient framework for the conversion of fault trees to diagnostic Bayesian network models


    Beteiligte:
    Wojtek Przytula, K. (Autor:in) / Milford, R. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.01.2006


    Format / Umfang :

    339964 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Topological Model for Bayesian Diagnostic Network

    Zhaoyong, H. / Liangsheng, Q. | British Library Online Contents | 2003


    Fault diagnostic system, fault diagnostic device, and fault diagnostic method

    SATO SHO / YONETANI SHINSUKE / ANDO YOSHINORI et al. | Europäisches Patentamt | 2017

    Freier Zugriff

    Development and Realization of Bayesian Diagnostic Network Platform

    Zhaoyong, H. / Feng, S. | British Library Online Contents | 2004