the study explores the application of reinforcement learning (RL) algorithms and capabilities of the Simulation of Urban Mobility (SUMO) solution to enhance urban traffic management in Taipei. Focusing on two major intersections this research employs Q-learning, a model-free RL algorithm, to optimize traffic signal timings based on real-time transport conditions. The methodology encompasses the vehicles real data collection, as well as traffic light phases, and simulation within the SUMO framework to model urban traffic scenarios. The findings reveal significant improvements in traffic throughput and reductions in trip durations during both peak and non-peak hours, demonstrating the potential of RL algorithms to enhance traffic flow efficiency. The study highlights the algorithm's effectiveness in reducing CO2 emissions, contributing to environmental sustainability goals. The results of the project underscore the importance of adopting advanced computational models in urban traffic management, offering insights into the development of smarter and more sustainable transportation systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Enhancing Urban Traffic Management in Taipei: A Reinforcement Learning Approach


    Beteiligte:


    Erscheinungsdatum :

    23.05.2024


    Format / Umfang :

    905066 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Enhancing Urban Traffic Management with Visible Light Communication and Reinforcement Learning

    Galvão Gonçalo / Vieira Manuel Augusto / Vieira Manuela et al. | DOAJ | 2024

    Freier Zugriff

    Enhancing Urban Pollution Reduction via Reinforcement Learning-Based Traffic Light Optimization

    Essamlali, Ismail / Nhaila, Hasna / El Khaili, Mohamed | Springer Verlag | 2025




    Urban traffic signal control using reinforcement learning agents

    Balaji, P.G. / German, X. / Srinivasan, D. | IET | 2010