The 5th generation (5G) mobile network technology is accelerating the development of autonomous vehicles by significantly shortening the communication latency and improving the reliability of network connection and transmission. However, as the number of vehicles increases, neither cloud servers nor multi-access edge computing (MEC) servers alone could sufficiently meet the Quality-of-Service (QoS) requirements for computing-intensive vehicle tasks. In this paper, we consider a hierarchical offloading scenario, where vehicle tasks are allowed to execute in MEC servers, convergence servers or cloud servers. To reduce the cost of latency and energy, we optimize the communication and computation resource allocation problem. The optimization problem is converted to a Markov decision process, and deep reinforcement learning is used to tackle the resource slicing and scheduling problem. Simulation results show that the proposed scheme is more resilient and efficient than that of single cloud server offloading or single MEC server offloading.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    URLLC Resource Slicing and Scheduling in 5G Vehicular Edge Computing


    Beteiligte:
    Hao, Min (Autor:in) / Ye, Dongdong (Autor:in) / Wang, Siming (Autor:in) / Tan, Beihai (Autor:in) / Yu, Rong (Autor:in)


    Erscheinungsdatum :

    01.04.2021


    Format / Umfang :

    2073567 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Proactive RAN Resource Reservation for URLLC Vehicular Slice

    NADDEH, Nathalie / JEMAA, Sana BEN / Eddine ELAYOUBI, Salah et al. | IEEE | 2021




    Resource Management for Intelligent Vehicular Edge Computing Networks

    Duan, Wei / Gu, Xiaohui / Wen, Miaowen et al. | IEEE | 2022