Predicting the trajectories of other road users relies to a large extent on the assumption that they adhere to the legally binding traffic rules. Hence, when this assumption does not hold anymore, the prediction becomes invalid, putting autonomous vehicles relying on such predictions in a critical situation. We propose a solution to this problem by predicting traffic rule violations. All traffic rules are modeled by temporal logic, and we provide real-valued generalizations of required logical predicates to obtain features for prediction with neural networks. The usefulness of our approach is demonstrated by predicting rule violations on a dataset recorded from a highway. Our results show that directly learning traffic rule violations using the features from temporal logic formulas often performs better compared to separately predicting and monitoring trajectories.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Predictive Monitoring of Traffic Rules


    Beteiligte:


    Erscheinungsdatum :

    19.09.2021


    Format / Umfang :

    639681 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Model Predictive Trajectory Optimization and Control for Autonomous Surface Vessels Considering Traffic Rules

    Tsolakis, Anastasios / Negenborn, Rudy R. / Reppa, Vasso et al. | IEEE | 2024


    Who Violates Traffic Rules?

    Jeevitha Devalla | DOAJ | 2018

    Freier Zugriff

    Leveraging traffic patterns to understand traffic rules

    OMARI SAMMY / QURESHI SAMEER | Europäisches Patentamt | 2025

    Freier Zugriff


    Leveraging Traffic Patterns to Understand Traffic Rules

    OMARI SAMMY / QURESHI SAMEER | Europäisches Patentamt | 2021

    Freier Zugriff