Intelligent spectrum sharing is one of the key enablers of upcoming sixth generation (6G) communications. Unmanned aerial vehicles (UAVs) have emerged as an attractive low altitude aerial base station (BS), providing on demand capacity especially in urban areas. This work aims to demonstrate the feasibility of coexisting UAV to UAV communication based adhoc network over digital television (DTV) bands governed through latest ATSC 3.0 standards. We propose an adaptive modulation and dynamic subcarrier (AMDS) allocation framework to intelligently allocate the resources at the UAV network through adaptive bit loading and frequency allocations. The work aims to maximize the capacity of the coexisting UAV network in addition to protecting the performance of the TV-receiver from the resultant coexisting network interference. A rate maximization problem is formulated and solved using a low computation complexity based bi-section method. Extensive simulation results indicate that the connected UAV link can achieve up to 40 Mbps capacity when 1 km apart, while coexisting and guaranteeing the performance of the DTV network.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Intelligent UAV Swarm Coexistence in DTV Bands


    Beteiligte:
    Dubey, Rajrshi (Autor:in) / Balakrishnan, Ashutosh (Autor:in) / De, Swades (Autor:in)


    Erscheinungsdatum :

    07.10.2024


    Format / Umfang :

    773379 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Decentralized Coexistence Protocol for V2X and Wi-Fi in Unlicensed Bands

    Yarinezhad, Ramin / Ekici, Eylem / Khan, Mohammad Irfan et al. | IEEE | 2024



    Aviation Swarm and Intelligent Air Combat

    Liang, Xiaolong / Liu, Liu / Zhang, Jiaqiang et al. | IEEE | 2018


    UAV Swarm Coordination Based on Intelligent Microservices

    Zhao, Yan / Wen, Pengcheng / Bai, Linting et al. | Springer Verlag | 2023


    Progress of AUV Intelligent Swarm Collaborative Task

    Qiao HU / Zhenyi ZHAO / Haobo FENG et al. | DOAJ | 2023

    Freier Zugriff