We address the challenge of domain adaptation in LiDAR-based 3D object detection by introducing a simple yet effective training strategy known as Gradual Batch Alternation. This method enables adaptation from a well-labeled source domain to an insufficiently labeled target domain. Initially, training commences with alternating batches of samples from both the source and target domains. As the training progresses, we gradually reduce the number of samples from the source domain. Consequently, the model undergoes a gradual transition towards the target domain, resulting in improved adaptation. Domain adaptation experiments for 3D object detection on four benchmark autonomous driving datasets, namely ONCE, PandaSet, Waymo, and nuScenes, demonstrate significant performance gains over prior works and strong baselines.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Gradual Batch Alternation for Effective Domain Adaptation in LiDAR-Based 3D Object Detection


    Beteiligte:
    Rochan, Mrigank (Autor:in) / Chen, Xingxin (Autor:in) / Grandhi, Alaap (Autor:in) / Corral-Soto, Eduardo R. (Autor:in) / Liu, Bingbing (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    1927650 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Unsupervised Evaluation of Lidar Domain Adaptation

    Hubschneider, Christian / Roesler, Simon / Zollner, J. Marius | IEEE | 2020


    Improving GAN-based Domain Adaptation for Object Detection

    Menke, Maximilian / Wenzel, Thomas / Schwung, Andreas | IEEE | 2022


    Cross-Sensor Deep Domain Adaptation for LiDAR Detection and Segmentation

    Rist, Christoph B. / Enzweiler, Markus / Gavrila, Dariu M. | IEEE | 2019


    DALi: Domain Adaptation in LiDAR Point Clouds for 3D Obstacle Detection

    Cortes, Irene / Beltran, Jorge / De La Escalera, Arturo et al. | IEEE | 2022


    LiDAR Domain Adaptation for Perception of Autonomous Vehicles

    Huch, Hans Carl Sebastian | TIBKAT | 2025

    Freier Zugriff