This paper studies the least mean-squared error linear estimation problem in distributed parameter systems from uncertain observations when the observation equation, besides the multiplicative noise component, is also affected by white plus coloured additive noises. Using as information the covariances of the involved processes, and assuming that the autocovariance functions of the signal and coloured noise are given in a semidegenerate kernel form, we propose recursive algorithms for the filter and fixed-point smoother.
Estimation from uncertain observations in distributed parameter systems covariance information
01.01.2003
289794 byte
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
Estimation from Uncertain Observations in Distributed Parameter Systems using Covariance Information
British Library Conference Proceedings | 2003
|Estimation of Distributed Parameter Systems
AIAA | 1982
|BASE | 2022
|Trajectory and parameter estimation with measurements of uncertain origin
Tema Archiv | 1984
|