The objective of drift counteraction optimal control (DCOC) problem is to compute an optimal control law that maximizes the expected time of violating specified system constraints. In this paper, we reformulate the DCOC problem as a reinforcement learning (RL) one, removing the requirements of disturbance measurements and prior knowledge of the disturbance evolution. The optimal control policy for the DCOC is then trained with RL algorithms. As an example, we treat the problem of adaptive cruise control, where the objective is to maintain desired distance headway and time headway from the lead vehicle, while the acceleration and speed of the host vehicle are constrained based on safety, comfort, and fuel economy considerations. An informed approximate Q-learning algorithm is developed with efficient training, fast convergence, and good performance. The control performance is compared with a heuristic driver model in simulation and superior performance is demonstrated.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Training Drift Counteraction Optimal Control Policies Using Reinforcement Learning: An Adaptive Cruise Control Example


    Beteiligte:
    Li, Zhaojian (Autor:in) / Chu, Tianshu (Autor:in) / Kolmanovsky, Ilya V. (Autor:in) / Yin, Xiang (Autor:in)


    Erscheinungsdatum :

    01.09.2018


    Format / Umfang :

    1979255 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Spacecraft Drift Counteraction Optimal Control: Open-Loop and Receding Horizon Solutions

    Zidek, Robert A. E. / Kolmanovsky, Ilya V. / Bemporad, Alberto | AIAA | 2018


    A stochastic drift counteraction optimal control approach to glider flight management

    Kolmanovsky, Ilya V. / Menezes, Amor A. | Tema Archiv | 2011



    INVERSE REINFORCEMENT LEARNING FOR ADAPTIVE CRUISE CONTROL

    GUPTA ROHIT / ABDELRAOUF AMR / HAN KYUNGTAE | Europäisches Patentamt | 2024

    Freier Zugriff

    Continuous Optimization-Based Drift Counteraction: A Spacecraft Attitude Control Case Study

    Tang, Sunbochen / Li, Nan / Zidek, Robert A. E. et al. | AIAA | 2022