In this paper, we study the channel selection problem in edge computing-empowered cognitive machine-to-machine (CM2M) communications, where a massive number of machine type devices (MTDs) offload their computational tasks to a nearby edge server by opportunistically using the spectra that are temporarily unoccupied by primary users (PUs). We formulate the channel selection problem as an adversarial multi-armed bandit (MAB) problem, and combine the exponential-weight algorithm for exploration and exploitation (EXP3) and Lyapunov optimization to develop a learning-based energy-efficient solution named SEB-EXP3. It can find the long-term optimal channel selection strategy with guaranteed performance based on local information, while simultaneously achieving service reliability awareness, energy awareness, and data backlog awareness. Four heuristic algorithms are compared with SEB-EXP3 to demonstrate its effectiveness and reliability under various simulation settings.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning-Based Energy-Efficient Channel Selection for Edge Computing-Empowered Cognitive Machine-to-Machine Communications


    Beteiligte:
    Liao, Haijun (Autor:in) / Zhou, Zhenyu (Autor:in) / Ai, Bo (Autor:in) / Guizani, Mohsen (Autor:in)


    Erscheinungsdatum :

    01.05.2020


    Format / Umfang :

    217923 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Machine Learning Empowered Large RIS-assisted Near-field Communications

    Zhong, Ruikang / Mu, Xidong / Liu, Yuanwei | IEEE | 2023


    Aerial-networked ISAC-empowered collaborative energy-efficient covert communications

    WU, Jun / YUAN, Weijie / TAO, Qin et al. | Elsevier | 2025

    Freier Zugriff

    Dynamic edge computing empowered by reconfigurable intelligent surfaces

    Paolo Di Lorenzo / Mattia Merluzzi / Emilio Calvanese Strinati et al. | BASE | 2022

    Freier Zugriff


    Machine learning based Intelligent cognitive network using fog computing

    Lu, Jingyang / Li, Lun / Chen, Genshe et al. | SPIE | 2017