Distorted sensors could occur randomly and may lead to the breakdown of a sensor array system. In this article, we consider an array model within which a small number of sensors are distorted by unknown sensor gain and phase errors. With such an array model, the problem of joint direction-of-arrival (DOA) estimation and distorted sensor detection is formulated under the framework of low-rank and row-sparse decomposition. We derive an iteratively reweighted least squares (IRLS) algorithm to solve the resulting problem. The convergence property of the IRLS algorithm is analyzed by means of the monotonicity and boundedness of the objective function. Extensive simulations are conducted regarding parameter selection, convergence speed, computational complexity, and performances of DOA estimation as well as distorted sensor detection. Even though the IRLS algorithm is slightly worse than the alternating direction method of multipliers in detecting the distorted sensors, the results show that our approach outperforms several state-of-the-art techniques in terms of convergence speed, computational cost, and DOA estimation performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Low-Rank and Row-Sparse Decomposition for Joint DOA Estimation and Distorted Sensor Detection


    Beteiligte:
    Huang, Huiping (Autor:in) / Liu, Qi (Autor:in) / So, Hing Cheung (Autor:in) / Zoubir, Abdelhak M. (Autor:in)


    Erscheinungsdatum :

    01.08.2023


    Format / Umfang :

    1168051 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Joint DOA Estimation and Distorted Sensor Detection

    Wang, Xiang-Yu / Li, Xiao-Peng / Huang, Huiping et al. | IEEE | 2025


    Image classification by non-negative sparse coding, correlation constrained low-rank and sparse decomposition

    Zhang, C. / Liu, J. / Liang, C. et al. | British Library Online Contents | 2014


    Convex Latent Effect Logit Model via Sparse and Low-rank Decomposition

    Zhan, Hongyuan / Madduri, Kamesh / Shankar, Venkataraman | ArXiv | 2021

    Freier Zugriff

    Vessel traffic flow separation-prediction using low-rank and sparse decomposition

    Liu, Ryan Wen / Chen, Jinwei / Liu, Zhao et al. | IEEE | 2017